The Sequence Chat: Rohan Taori on Stanford's Alpaca, Alpaca Farm and the Future of LLMs
Was this email forwarded to you? Sign up here The Sequence Chat: Rohan Taori on Stanford's Alpaca, Alpaca Farm and the Future of LLMsAlpaca was one of the first open LLMs to incorporate instruction following capabilities. Now one of the project's main researchers shares his insights about modern LLMs.👤 Quick bio
I’m currently a PhD student at Stanford, where my research has focused around understanding and improving the use of real-world machine learning systems. My interest in ML started during my undergrad at Berkeley where I met a fantastic group of people (who later became good friends) who introduced me to DeepDream, a method for style transfer with image classification models. Though these models are nothing compared to the generative text-to-image models we have today, I was enthralled by the art pieces created by DeepDream, and that set me on a path delving into deep learning. 🛠 ML Work
Alpaca was really sort of a happy surprise along the way of our bigger project, AlpacaFarm. Our goal for AlpacaFarm was to study methods for learning from human feedback (e.g. RLHF) in depth, as this process has been used to train models like ChatGPT. The first step for any RLHF method is actually to perform supervised fine-tuning on a small set of initial questions and answers, which is the baseline that any method builds off of. Alpaca is precisely this baseline! We were stunned at how just a little bit of fine-tuning made the base LLaMA 7B model so much easier to interact with, and so we released the model as a way to share this information with everyone.
Alpaca itself did not have any RLHF component and was only supervised fine-tuned on a small question-answer set. To build this dataset, we queried text-davinci-003 to generate questions and answers to open-ended instructions in a format similar to a set of seed questions written by the authors of SelfInstruct (https://arxiv.org/abs/2212.10560). Our subsequent project, AlpacaFarm, studied the RLHF component in more detail. In this stage, we asked the model to generate two outputs for a set of instructions, and then asked humans to select which output they preferred. We then trained a binary classifier (or reward model) with this data, and optimized against it with a variety of methods, including PPO.
AlpacaFarm is a simulator that enables research on learning from feedback quickly and cheaply. The primary component is a set of LLM prompts designed to simulate humans - we ask GPT-4 and ChatGPT for the output preferences to train the reward model, and we designed this automated feedback to align with learning from real human feedback. We also include a standardized evaluation protocol for judging the performance of any instruction-following model, and a set of reference implementations for PPO and other RLHF methods. AlpacaFarm is really cool because the rankings of different methods developed in simulation roughly line up with the rankings of the methods when trained on actual human feedback, which means that the simulator can serve as an effective way to study and develop new RLHF methods.
I think that tool learning is a really exciting direction, as it equips LLMs with the ability to execute very complex tasks. At the same time, there is a greater security risk in giving an automated agent control over various external resources. So developing new methods for tool use and mitigating the security risks is a really important research discussion for the near future. While Alpaca doesn’t come with tool use directly, AlpacaFarm shows that simulation is a viable way to easily study real-world LM behaviors, and I’m excited to see what this direction can bring.
Alpaca is not actually open-source - it came with a non-commercial license due to the assets involved in its creation. However, since then, other truly open-source instruction-following models have been released to the community, which is great. Just like any new technology, there are new risks and consequences with LLMs. My view is that having better models more openly available will enable research on these important questions. Many of the issues surrounding their use involve different communities, different norms, and different cultures; open releases are a great way of inviting the broader participation needed in the development of these models. 💥 Miscellaneous – a set of rapid-fire questions
Having worked in image classification for a while, I have to say that I am quite fond of CLIP (https://arxiv.org/abs/2103.00020) - a contrastive learning paradigm to align text and images found on the internet. Constructing a new classifier for a downstream task can now be much easier, and potentially even accomplished with just a bit of prompting.
I really don’t know too much about the intricacies of different ML architectures. As a broader vision, I am pretty excited to see video understanding capabilities be added into language models, and there are lots of questions around how to best encode video data efficiently that have yet to be answered.
This question is hard to answer, in part because we don’t know how big GPT-4 is :). More generally, as a community, we lack a good understanding of how the quality of pre-training data impacts model performance. For example, what sources should be included in the dataset? What types of automated filters should we train, and how aggressively should we use them? How feasible is it to learn from multi-lingual data? All these and many more data engineering questions remain, and we will probably see model capabilities steadily improve as we solve more pieces of this puzzle.
AlpacaFarm is really the completion arc for Alpaca! I’m really excited to see the methods innovation that the simulator can bring in the following months. Apart from that, I have a few loose ideas about what to work on next, but nothing concrete decided for now. You’re on the free list for TheSequence Scope and TheSequence Chat. For the full experience, become a paying subscriber to TheSequence Edge. Trusted by thousands of subscribers from the leading AI labs and universities. |
Older messages
Edge 295: Self-Instruct Models
Tuesday, May 30, 2023
What if LLMs could auto improve their own instruction following capabilities?
📝 Guest Post: How to build a responsible code LLM with crowdsourcing*
Monday, May 29, 2023
In this post Toloka showcases Human-in-the-Loop using StarCoder, a code LLM, as an example. They address PII risks by training a PII reduction model through crowdsourcing, employing strategies like
GPT-Microsoft
Sunday, May 28, 2023
Sundays, The Sequence Scope brings a summary of the most important research papers, technology releases and VC funding deals in the artificial intelligence space.
Announcing Turing Post
Saturday, May 27, 2023
When we launched TheSequence back in 2020, AI and machine learning were not as widely discussed or covered. Our goal from the start was to make AI knowledge accessible in bite-sized pieces, helping
📢 Event: ML practitioners from Affirm, Block, Remitly, Tide & more share their learnings from building risk & fra…
Friday, May 26, 2023
Want to connect with the ML engineering community and learn best practices from ML practitioners on how to build risk and fraud detection systems? Then join us on May 30 for apply(risk), a free half-
You Might Also Like
Transformers are Eating Quantum
Sunday, November 24, 2024
DeepMind's AlphaQubit addresses one of the main challenges in quantum computing. ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏
Retro Recomendo: Gift Ideas
Sunday, November 24, 2024
Recomendo - issue #438 ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏
Kotlin Weekly #434
Sunday, November 24, 2024
ISSUE #434 24th of November 2024 Hi Kotliners! Next week is the last one to send a paper proposal for the KotlinConf. We hope to see you there next year. Announcements State of Kotlin Scripting 2024
Weekend Reading — More time to write
Sunday, November 24, 2024
More Time to Write A fully functional clock that ticks backwards, giving you more time to write. Tech Stuff Martijn Faassen (FWIW I don't know how to use any debugger other than console.log) People
🕹️ Retro Consoles Worth Collecting While You Still Can — Is Last Year's Flagship Phone Worth Your Money?
Saturday, November 23, 2024
Also: Best Outdoor Smart Plugs, and More! How-To Geek Logo November 23, 2024 Did You Know After the "flair" that servers wore—buttons and other adornments—was made the butt of a joke in the
JSK Daily for Nov 23, 2024
Saturday, November 23, 2024
JSK Daily for Nov 23, 2024 View this email in your browser A community curated daily e-mail of JavaScript news React E-Commerce App for Digital Products: Part 4 (Creating the Home Page) This component
Not Ready For The Camera 📸
Saturday, November 23, 2024
What (and who) video-based social media leaves out. Here's a version for your browser. Hunting for the end of the long tail • November 23, 2024 Not Ready For The Camera Why hasn't video
Daily Coding Problem: Problem #1617 [Easy]
Saturday, November 23, 2024
Daily Coding Problem Good morning! Here's your coding interview problem for today. This problem was asked by Microsoft. You are given an string representing the initial conditions of some dominoes.
Ranked | The Tallest and Shortest Countries, by Average Height 📏
Saturday, November 23, 2024
These two maps compare the world's tallest countries, and the world's shortest countries, by average height. View Online | Subscribe | Download Our App TIME IS RUNNING OUT There's just 3
⚙️ Your own Personal AI Agent, for Everything
Saturday, November 23, 2024
November 23, 2024 | Read Online Subscribe | Advertise Good Morning. Welcome to this special edition of The Deep View, brought to you in collaboration with Convergence. Imagine if you had a digital