📝 Guest post: How to Prioritize Data Quality for Computer Vision: An Expert Primer*
In this article With the rise of the data-centric AI movement (of which computer vision is a subset), the spotlight has been shifting from algorithm design to dataset development. Data is the highest contributor to model performance for many modern neural network architectures. Adding layers to the network, skipping connections, or tuning certain hyperparameters have limited model performance effects. Many practitioners spend countless hours creating and curating labeled data to train state-of-the-art architectures at the penalty of algorithm development. Additionally, dataset creation is one of the most costly and demanding components of the entire computation pipeline. Therefore, good practices for data quality are critical to ensuring successful outcomes. Why Have Data Quality Solutions Become Essential for Computer Vision?In short, the growing importance of analytics and ML applications demands modern data quality solutions:
Labeled datasets are among the most desired assets computer vision practitioners seek The 6 Dimensions of Data QualityAs a concept, data is of high quality if it fits the intended purpose of use. In the context of ML, data is of high quality if it correctly represents the real-world construct that the data describes, meaning that it is representative of the underlying population and scenarios. While good quality differs from case to case, there are common dimensions of data quality that can be measured.
The State of Data QualityConsidering that data teams identify data quality as their primary KPI while lacking tools and processes to manage that, it is not surprising that they are haunted by manual work, as many routine tasks such as testing the changes to ETL code or tracing data dependencies can take days without proper automation. They need to write ad-hoc data quality checks or ask others before using the data for their work. A few teams use automated tests and data catalogs as a source of truth for data quality.
There have not been many data quality tools that deal with unstructured visual data from my research. All of the tools mentioned above only deal with structured tabular data. Therefore, there’s an emerging opportunity to design such a tool given the untapped potential of visual data, which has a larger footprint than structured data and is powering more novel computer vision applications. Designing A Data Quality Tool For Computer VisionShould we care about the quality of our visual datasets? If the goal is to build algorithms that can understand the visual world, having high-quality datasets will be crucial. We outline below three recommendations for designing a data quality tool for computer vision. 1 - Detect and Avoid BiasTorralba and Efros, 2011 To minimize the effects of bias during dataset construction, a data quality tool for computer vision should be able to:
2 - Tackle Quality Aspects
To solve the issues associated with the aspects mentioned above, a data quality tool for computer vision should be capable of:
3 - Offer Visual AnalysesAlsallakh etl al., 2022 To improve understanding of computer vision datasets, a data quality tool for computer vision should offer visual analysis techniques mentioned above:
ConclusionThe understanding of the quality of data used to train a model, the clarity of the labeling process, and the knowledge of the strengths and weaknesses of the ground-truth data used to evaluate the models will lead to increased traceability, verification, and transparency in computer vision systems. In this article, we have given a tour of the data quality tooling landscape and proposed ideas to design a robust data quality tool for computer vision applications.
|
You’re on the free list for
Older messages
👤⚙️ Edge#196: FLUTE is Microsoft’s New Framework for Federated Learning
Thursday, June 2, 2022
The new framework enables large scale, offline simulations of federated learning scenarios
📝 Guest post: Prevent AI failure with data logging and ML monitoring*
Wednesday, June 1, 2022
Monitoring and observability for AI applications are on every organization's roadmap right now. In this guest post, our partner WhyLabs highlights the need for data and machine learning-specific
💠 Edge#195: A New Series About Graph Neural Networks
Tuesday, May 31, 2022
In this issue: we start a new series about graph neural networks (GNN); we observe how DeepMind showcases the potential of GNN; we discuss Deep Graph Library, a framework for implementing GNNs. Enjoy
🟥🟩🟦🟨 Microsoft’s New ML Announcements
Sunday, May 29, 2022
Weekly news digest curated by the industry insiders
🎙 Mike Del Balso/CEO of Tecton about Operational ML and ML Flywheels
Friday, May 27, 2022
It's so inspiring to learn from practitioners and thinkers. Getting to know the experience gained by researchers, engineers, and entrepreneurs doing real ML work is an excellent source of insight
You Might Also Like
🔒 The Vault Newsletter: November issue 🔑
Monday, November 25, 2024
Get the latest business security news, updates, and advice from 1Password. ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏ ͏
🧐 The Most Interesting Phones You Didn't See in 2024 — Making Reddit Faster on Older Devices
Monday, November 25, 2024
Also: Best Black Friday Deals So Far, and More! How-To Geek Logo November 25, 2024 Did You Know If you look closely over John Lennon's shoulder on the iconic cover of The Beatles Abbey Road album,
JSK Daily for Nov 25, 2024
Monday, November 25, 2024
JSK Daily for Nov 25, 2024 View this email in your browser A community curated daily e-mail of JavaScript news JavaScript Certification Black Friday Offer – Up to 54% Off! Certificates.dev, the trusted
Ranked | How Americans Rate Business Figures 📊
Monday, November 25, 2024
This graphic visualizes the results of a YouGov survey that asks Americans for their opinions on various business figures. View Online | Subscribe Presented by: Non-consensus strategies that go where
Spyglass Dispatch: Apple Throws Their Film to the Wolves • The AI Supercomputer Arms Race • Sony's Mobile Game • The EU Hunts Bluesky • Bluesky Hunts User Trust • 'Glicked' Pricked • One Massive iPad
Monday, November 25, 2024
Apple Throws Their Film to the Wolves • The AI Supercomputer Arms Race • Sony's Mobile Game • The EU Hunts Bluesky • Bluesky Hunts User Trust • 'Glicked' Pricked • One Massive iPad The
Daily Coding Problem: Problem #1619 [Hard]
Monday, November 25, 2024
Daily Coding Problem Good morning! Here's your coding interview problem for today. This problem was asked by Google. Given two non-empty binary trees s and t , check whether tree t has exactly the
Unpacking “Craft” in the Software Interface & The Five Pillars of Creative Flow
Monday, November 25, 2024
Systems Over Substance, Anytype's autumn updates, Ghost's progress with its ActivityPub integration, and a lot more in this week's issue of Creativerly. Creativerly Unpacking “Craft” in the
What Investors Want From AI Startups in 2025
Monday, November 25, 2024
Top Tech Content sent at Noon! How the world collects web data Read this email in your browser How are you, @newsletterest1? 🪐 What's happening in tech today, November 25, 2024? The HackerNoon
GCP Newsletter #426
Monday, November 25, 2024
Welcome to issue #426 November 25th, 2024 News LLM Official Blog Vertex AI Announcing Mistral AI's Large-Instruct-2411 on Vertex AI - Google Cloud has announced the availability of Mistral AI's
⏳ 36 Hours Left: Help Get "The Art of Data" Across the Finish Line 🏁
Monday, November 25, 2024
Visual Capitalist plans to unveal its secrets behind data storytelling, but only if the book hits its minimum funding goal. View Online | Subscribe | Download Our App We Need Your Help Only 36 Hours