The Sequence Chat: Nathan Benaich, Air Street Capital About Investing in Generative AI
Was this email forwarded to you? Sign up here The Sequence Chat: Nathan Benaich, Air Street Capital About Investing in Generative AIA conversation about the state of the generative AI market, new research breakthroughts, open source , opportunities for startups and many other insights.Quick BioNathan Benaich is the Founder and General Partner of Air Street Capital, a venture capital firm investing in early-stage AI-first technology and life science companies. His investments include Allcyte (acq. Exscientia), Intenseye, Thought Machine, Profluent, V7, Synthesia, and Valence Discovery (acq. Recursion). Nathan is the co-author of the annual State of AI Report and the newsletter, your guide to AI. Nathan also leads Spinout.fyi, which seeks to improve university spinout creation starting with open data on deal terms, and The RAAIS Foundation, a non-profit that runs the annual RAAIS summit and funds open source AI fellowships. He holds a Ph.D. in cancer biology from the University of Cambridge and a BA from Williams College. Quick bio
I took what was then an unorthodox route into VC, but I believe it’s now becoming more and more common. My original plan was to go to medical school to become a physician-scientist working on translational research in cancer and stem cell biology. I studied biology at Williams College and worked on breast cancer metastasis at the Whitehead Institute at MIT during my summers. I was fascinated by the incredible engine of the Boston biotech ecosystem that systematically translates inventions in the lab into spinouts to create products that make a difference in the world. At the same time, I saw the many challenges associated with building a life science company - ranging from the huge amounts of capital required through to the gauntlet of clinical trials and human biology. As I pursued my PhD in experimental and computational cancer research at Cambridge in the UK, I became more and more fascinated with technology and startups beyond biotech. Products like Dropbox, iPhones, and Twitter were launching during my undergraduate studies and had properly scaled by the time I got to grad school. These innovations not only engaged me, but made peoples' lives more enjoyable and efficient. I started teaching, immersing myself into the tech and venture capital scene (VC). I kept seeing that the most exciting and ambitious companies were financed with VC and I discovered a passion for discovering inspirational founders trying to change their fields. I found that VC could fulfill my scientific urge to formulate and test a data-driven thesis. When my research group moved to London, I took full advantage of the nascent startup ecosystem there. I met entrepreneurs and investors, went to meetups and through lots of hard work, found myself with a shot in VC. Air Street was built on the idea that AI-first companies require AI-first investors. Since day one, I’ve worked hard to deepen our connection and role in the AI community, whether it’s through our international meetups, producing the State of AI Report, and supporting the RAAIS conference and the RAAIS Foundation. 🛠 AI Work
At Air Street, we are unashamedly positive about the potential of AI. We believe it will unlock a new era of economic progress and scientific discovery, by acting as a force multiplier on technology. With that in mind, we look for founders building AI-first companies helping to solve real-world challenges. By AI-first, we mean that AI is central to what they are building and if you removed it, they wouldn’t have a functioning product. The founders we back combine two main traits. Firstly, deep insight into their customers’ operating context, pressures, pain-points, and how new technology would fit into their way of working. Secondly, technical brilliance combined with pragmatism when it comes to selecting the right tools to use or build. For example, it may mean accepting that even in 2023, not every problem has a GenAI-shaped solution…
A few years ago, long before the generative AI boom, I wrote an essay making the case for the full-stack machine learning company. This means, instead of building part of the stack and licensing it out to another business to solve a problem, you build a business that creates a fully-integrated ML product that solves the problem end-to-end. If we take an example from the life sciences, a company that licenses out a model to help big pharma is probably going to capture less economic upside than one that builds an end-to-end drug discovery platform that owns drug assets. I’m much more excited by that kind of ambitious vision than the many LLM-as-a-service businesses that have sprung up in the last year.
The State of AI is our annual report, covering the biggest developments across research, industry, politics, and safety. Unsurprisingly, there was a heavy generative AI presence in this year’s report - including both an assessment of model performance and promising applications, we try to write with a wider lens. Progress in GenAI doesn’t just have implications for researchers or investors, it powers other trends. For example, the GenAI boom has clearly had a knock-on effect on the semiconductor wars between the US and China, and the report charts how the US has aggressively mobilized its allies amid a faltering Chinese response. It’s also accelerated the global governance conversation, as lawmakers have scrambled to respond in the face of a bad-tempered debate about risk inside the AI community. It’s also important to note that it’s the State of AI, not the State of LLMs, and we cover much more besides. This year’s report also contains a range of material, covering everything from the life sciences, weather-forecasting, and autonomy through to the potential impact of AI on sensitive political subjects, including elections and job losses.
This year’s report finds that there’s a clear capability gap between GPT-4 and its more open counterparts. Meta’s Llama 2, a more open alternative, is competitive with Chat-GPT on most tasks, with the exception of coding, where it lags it significantly. Code Llama, a code-specialized version of Llama 2, is competitive with GPT-4, which demonstrates that task-specific models still have a chance. We’ve definitely seen a push by incumbents for more closed source AI - stemming from a combination of genuine safety concerns and obvious commercial cynicism. A low light for us in this year’s report was OpenAI’s hollow technical report on GPT-4 and Anthropic’s decision not to publish one at all for Claude 2, despite both being built on the shoulders of open source. However, I’ve been encouraged by the resilience of the open source ecosystem. Hugging Face, the town hall for open source AI has seen record levels of traffic. August of this year alone saw 600 million model downloads. Open source models have been continually improving in performance and I see no reason why this trend won’t continue. In smaller, more specialized applications, there’s a particularly clear role for teams that don’t have the resources to build multi-trillion parameter models.
It’s theoretically possible we might hit $10 billion models, but I think we’re still some way off; after all, the report predicts the emergence of $1 billion models next year. I think it’s possible, however, that we may have hit the point of diminishing returns before the $10 billion point. In the report, we point to how researchers at Epoch AI have already warned about us hitting a data ceiling. They argue that we could run out of high-quality language data as early as 2026 and low-quality language in the 2030s. Similarly, there are interesting case studies of teams building smaller, curated language models designed for specific tasks, with impressive performance. For specialized applications, these may prove a cheaper, more efficient route, rather than striving for ever greater scale. 💥 Miscellaneous – a set of rapid-fire questions
I don’t think it’s impossible, but we’re a long way off from this happening. OpenAI has blasted past its revenue targets, but its losses are continuing to mount steeply. Trillion-dollar businesses, like Alphabet, Apple, and Microsoft, have achieved clear, sustained commercial success with significant moats and cash cow products. While OpenAI has generous financial backers in Microsoft, at some point (particularly in a high-interest rate environment), gravity is likely to reassert itself, triggering tough questions about the business model. I don’t doubt that the team at OpenAI will be able to figure out the answer, but until the wider foundation model space moves from producing technical breakthroughs to building scalable businesses, talk of trillion-dollar valuations seems premature.
Language alone obviously doesn’t capture the full scope of human reasoning or communication, or how we plan and take action in the world. That’s why we see multimodality as the new frontier in this year’s report. We see this already in GPT-4 (and GPT-4V), which unlike its predecessors, was trained on both text and images and can generate text from images. Multimodality is already beginning to underpin a range of exciting potential applications. Google’s Med-PaLM 2 language model exceeded expert physician performance on the US Medical Licensing Examination, but obviously real-world medicine isn’t a purely text-based profession. With this in mind, Google created a dataset called MultiMedBench that has medical questions along with matching images, allowing them to train multimodal systems that understand both text and images. A version of MedPaLM was trained on this dataset, with a single set of weights to handle multiple data types. This helps it generalize and perform new medical tasks. We’ve also seen UK self-driving start-up Wayve build a model called LINGO-1, a model that combines videos of journeys with expert commentary on driving behavior and the scene. You can also ask the model questions via natural language. As well as improving reasoning and planning, it potentially marks a big step forward in the explainability of end-to-end driving models.
These mistakes usually happen at the conceptual stage. Anyone operating in this space, whether they’re a founder or investor should ask themselves a few fundamental questions. Firstly, is generative AI actually the most efficient, pragmatic solution to the challenge you’re approaching? Fashion will change and getting side-tracked by whatever’s vogueish will set you up for failure later on. Secondly, is there a viable business model? Going back to the full-stack machine learning company, there are many generative AI businesses that risk missing out on a lot of the value they’re helping to create. Finally, are you playing in a space you’re likely to win in? Certain spaces, whether it’s foundational model creation or finetuning-as-a-service are disproportionately likely to be captured by well-funded incumbents. A new entrant needs a clear edge.
Chris Ré is an exceptional computer scientist at Stanford with a track record of focusing his research on real-world problems for data and AI teams. For example, his group recently produced FlashAttention, which makes the memory footprint of attention smaller, to produce faster and higher quality transformer models. Alongside his students, Chris has also spun out now large-scale companies in AI such as Snorkel, SambaNova Systems and Lattice Data (acq. Apple). Eric Lander is a Professor of Biology at MIT and Professor of Systems Biology at Harvard Medical School. He made seminal contributions to population genetics and led the formation of the Whitehead Institute/MIT Center for Genome Research, which became a key center for the Whole Genome Project Human Genome Project that started in 1990. He then drove the founding of the Broad Institute in 2004, which is hands-down one of the best research centers for human biology in the world, particularly when it comes to approaches that unite software and biological experimentation at large automated scales. You’re on the free list for TheSequence Scope and TheSequence Chat. For the full experience, become a paying subscriber to TheSequence Edge. Trusted by thousands of subscribers from the leading AI labs and universities. |
Older messages
Edge 341: What is Prompt-Tuning?
Tuesday, November 7, 2023
A simple and quite effective technique to fine-tune LLMs.
📝 Guest Post: Introduction to DiskANN and the Vamana Algorithm*
Monday, November 6, 2023
In this tutorial, Frank Liu, Solutions Architect at Zilliz, will deep dive into DiskANN, a graph-based indexing strategy, their first foray into on-disk indexes. Like HNSW, DiskANN avoids the problem
DeepMind's AlphaFold-Latest is Pushing the Boundaries of Scientific Exploration
Sunday, November 5, 2023
The model continues making breakthroughts in digital biology.
📣 ML Engineering Event: Join HelloFresh, Remitly, Riot Games, Uber & more at apply(ops)
Friday, November 3, 2023
apply(ops) is just around the corner! Join the global ML community at this virtual event—speakers from companies like HelloFresh, Lidl Digital, Meta, PepsiCo, Riot Games, and more will share best
Meet AutoGen: Microsoft's Super Innovative Framework for Autonomous Agents
Thursday, November 2, 2023
A new open source framework that streamlines reasoning and communication with agents.
You Might Also Like
🕹️ Retro Consoles Worth Collecting While You Still Can — Is Last Year's Flagship Phone Worth Your Money?
Saturday, November 23, 2024
Also: Best Outdoor Smart Plugs, and More! How-To Geek Logo November 23, 2024 Did You Know After the "flair" that servers wore—buttons and other adornments—was made the butt of a joke in the
JSK Daily for Nov 23, 2024
Saturday, November 23, 2024
JSK Daily for Nov 23, 2024 View this email in your browser A community curated daily e-mail of JavaScript news React E-Commerce App for Digital Products: Part 4 (Creating the Home Page) This component
Not Ready For The Camera 📸
Saturday, November 23, 2024
What (and who) video-based social media leaves out. Here's a version for your browser. Hunting for the end of the long tail • November 23, 2024 Not Ready For The Camera Why hasn't video
Daily Coding Problem: Problem #1617 [Easy]
Saturday, November 23, 2024
Daily Coding Problem Good morning! Here's your coding interview problem for today. This problem was asked by Microsoft. You are given an string representing the initial conditions of some dominoes.
Ranked | The Tallest and Shortest Countries, by Average Height 📏
Saturday, November 23, 2024
These two maps compare the world's tallest countries, and the world's shortest countries, by average height. View Online | Subscribe | Download Our App TIME IS RUNNING OUT There's just 3
⚙️ Your own Personal AI Agent, for Everything
Saturday, November 23, 2024
November 23, 2024 | Read Online Subscribe | Advertise Good Morning. Welcome to this special edition of The Deep View, brought to you in collaboration with Convergence. Imagine if you had a digital
Educational Byte: Are Privacy Coins Like Monero and Zcash Legal?
Saturday, November 23, 2024
Top Tech Content sent at Noon! How the world collects web data Read this email in your browser How are you, @newsletterest1? 🪐 What's happening in tech today, November 23, 2024? The HackerNoon
🐍 New Python tutorials on Real Python
Saturday, November 23, 2024
Hey there, There's always something going on over at Real Python as far as Python tutorials go. Here's what you may have missed this past week: Black Friday Giveaway @ Real Python This Black
Re: Hackers may have stolen everyone's SSN!
Saturday, November 23, 2024
I wanted to make sure you saw Incogni's Black Friday deal, which is exclusively available for iPhone Life readers. Use coupon code IPHONELIFE to save 58%. Here's why we recommend Incogni for
North Korean Hackers Steal $10M with AI-Driven Scams and Malware on LinkedIn
Saturday, November 23, 2024
THN Daily Updates Newsletter cover Generative AI For Dummies ($18.00 Value) FREE for a Limited Time Generate a personal assistant with generative AI Download Now Sponsored LATEST NEWS Nov 23, 2024