A video simulation of the Teledesic constellation of satellites that would have given us fast worldwide satellite internet.
We haven’t actually seen the dream of satellite internet as it was originally intended
The internet wasn’t initially globally accessible, though it eventually worked its way up to that.
But some saw the global potential early—particularly in the world of satellites. For example, the company Teledesic wanted to create a whole network of hundreds of satellites that would provide high-speed internet access around the world. The company had a big name backer—a guy named Bill Gates—and ambitious plans.
At one point, Teledesic pitched the idea of building a $9 billion satellite system, complete with the support of Boeing. This system, which would have involved hundreds of individual satellites circling the globe, was built around a broad vision of turning satellite internet into a mainstream product.
(And it wasn’t alone: Motorola, at one point, backed the satellite firm Iridium Communications, which planned a $5 billion network of its own.)
Daniel Kohn, who helped operate the company, put forth an impressive vision of what the Teledesic network, once completed, would look like. In an essay for the Internet Society, he described a low-Earth-orbit satellite network, based on the Ka satellite band, that would provide internet speeds as fast as fiber-optic cables, no matter where you were globally.
“The promise of the information age is constrained by the lack of access to switched, broadband services in most of the developed and virtually all of the developing world,” Kohn explained in the essay. “The Teledesic Network will provide a means to help extend these switched, broadband connections on demand anywhere on Earth.”
There was a problem, however, and the passage of time highlighted how big a problem it was. In his essay, Kohn made a prediction about fiber-optic-driven internet access that turned out to be incredibly wrong:
While there is a lot of fiber out there in the world—and the number of places is growing—it is used primarily to connect countries and telephone company central offices. Even in a country like the United States, little of that fiber will be extended for local access to individual offices and homes, which represents 80 percent of the cost of a network. In most of the world, fiber deployment likely never will happen.
As any FIOS or Google Fiber subscriber will tell you, we do in fact have fiber optic cable that goes to many homes—not all, but far more than Kohn’s general prediction implied. The value of the internet was such that companies were actually willing to spend massive amounts of capital on those last-mile fiber-optic connections. Additionally, the success of coaxial cables in providing fast internet access to users around the world helped muffle some of the need for a massive satellite internet network.
That said, Kohn’s point remains valid. There are still lots of parts of the world that don’t have fast internet access. It just turned out that there were far fewer than the audacious plan anticipated.
And as a result, the market for satellite internet is immensely disappointing in comparison to Teledesic’s aspirations. It’s no wonder that the company eventually faded away. Despite talking a big game and having big-money backers, the company eventually stopped building its audacious idea in 2002, with little to show for it despite hundreds of millions of dollars in investments.
“We think there’s still demand in the market for these services,” Teledesic spokesman Todd Wolfenbarger told the Seattle Times at the time. “But absent of some other partner, it’s not going to happen.”
We did get satellite internet, but it didn’t look anything like the big idea Teledesic was trying to sell.